
Managing IT Projects

Chapter 3
Software Project Life cycle

The Systems Development
Life Cycle (SDLC)

The SDLC is composed of four
fundamental phases:

-Planning

–Analysis

–Design

–Implementation

Each of the phases include a set of steps,
which rely on techniques that produce
specific document files that provide
understanding about the project.
To Understand the SDLC:
– Each phase consists of steps that lead to

specific deliverables
– The system evolves through gradual

refinement

The Systems Development Life Cycle (SDLC)

This phase is the fundamental process of
understanding why an information system
should be built.
The Planning phase will also determine
how the project team will go about
building the information system.
The Planning phase is composed of two
planning steps.

Phase I: Planning

1. During project initiation, the system’s
business value to the organization is
identified (How will it lower costs or
increase revenues?)

2. During project management, the project
manager creates a work plan, staffs the
project, and puts techniques in place to
help the project team control and direct
the project through the entire SDLC.

Two Planning Steps

The analysis phase answers the questions
of who will use the system, what the
system will do, and where and when it will
be used.
During this phase the project team
investigates any current system(s),
identifies improvement opportunities, and
develops a concept for the new system.
This phase has three analysis steps.

Phase II: Analysis

Three Analysis Steps

1. Analysis strategy: This is developed to guide
the projects team’s efforts. This includes an
analysis of the current system.

2. Requirements gathering: The analysis of this
information leads to the development of a
concept for a new system. This concept is used
to build a set of analysis models.

3. System proposal: The proposal is presented to
the project sponsor and other key individuals
who decide whether the project should continue
to move forward.

The system proposal is the initial
deliverable that describes what business
requirements the new system should meet.
The deliverable from this phase is both an
analysis and a high-level initial design for
the new system.

In this phases it is decided how the system
will operate, in terms of the hardware,
software, and network infrastructure; the
user interface, forms, and reports that will
be used; and the specific programs,
databases, and files that will be needed.

Phase III: Design

Five Design Steps

1. Design Strategy: This clarifies whether the
system will be developed by the company or
outside the company.

2. Architecture Design: This describes the
hardware, software, and network infrastructure
that will be used.

3. Database and File Specifications: These
documents define what and where the data will
be stored.

4. Program Design: Defines what programs need
to be written and what they will do.

During this phase, the system is either
developed or purchased (in the case of
packaged software).
This phase is usually the longest and most
expensive part of the process.
The phase has three steps.

Phase IV: Implementation

System Construction: The system is built
and tested to make sure it performs as
designed.
Installation: Prepare to support the
installed system.
Support Plan: Includes a post-
implementation review.

Three Implementation Steps

A methodology is a formalized approach to
implementing the SDLC.
The methodology will vary depending on
whether the emphasis is on businesses
processes or on the data that supports the
business.

Systems Development Methodologies

Process-centered Methodologies

With this methodology, the focus is on
defining the activities associated with the
system.
The concentration is on representing the
system concept as a set of processes with
information flowing into and out of the
processes.

This methodology focuses on defining the
content of the data storage containers and
how they are organized.
Data-centered methodologies utilize data
models as the core of the system concept.

Data-centered Methodologies

This methodology attempts to balance the
focus between processes and data.
The Unified Modeling Language (UML) is
used to describe the system concept as a
collection of objects incorporating both
data and processes.

Object-oriented Methodologies

Structured design methodologies adopt a
formal step-by-step approach to the SDLC
that moves logically from one phase to the
next.
This design methodology introduces the
use of formal modeling or diagramming
techniques to describe a system’s basic
business processes and follows a basic
approach of two structured design
categories.

Category I of the System Development Methodology:
Structured Design

With waterfall development- based
methodologies, the analysts and users proceed
sequentially from one phase to the next.
The two key advantages of waterfall
development-based methodologies are:

- The system requirements are identified long
before programming begins.
- Changes to the requirements are minimized as
the project proceeds.

Waterfall Development

The two key disadvantages of waterfall
development-based methodologies are:

- The design must be completely specified
before programming begins.

- A long time elapses between the completion
of the system proposal in the analysis phase and
the delivery of the system.

Waterfall Development-based
Methodology

This methodology attempts to address the long
time interval between the analysis phase and the
delivery of the system.

Parallel Development

A general design for the entire system is performed
and then the project is divided into a series of distinct
subprojects

Parallel Development

RAD-based methodologies adjust the SDLC
phases to get some part of system developed
quickly and into the hands of the users.
Most RAD-based methodologies recommend that
analysts use special techniques and computer
tools to speed up the analysis, design, and
implementation phases, such as CASE
(computer-aided software engineering) tools.
One possible subtle problem with RAD-based
methodologies is managing user expectations.

Rapid Application Development (RAD)

This methodology breaks the overall system into
a series of versions that are developed
sequentially.
The team categorizes the requirements into a
series of versions, then the most important and
fundamental requirements are bundled into the
first version of the system.
The analysis phase then leads into design and
implementation; however, only with the set of
requirements identified for version 1.
As each version is completed, the team begins
work on a new version.

Phased Development

Phased Development-based
Methodology

Prototyping-based methodologies perform
the analysis, design and implementation
phases concurrently.
All three phases are performed repeatedly
in a cycle until the system is completed.
A prototype is a smaller version of the
system with a minimal amount of features.

Prototyping

Prototyping-based Methodology

Advantage: Provides a system for the users
to interact with, even if it is not initially
ready for use.
Disadvantage: Often the prototype
undergoes such significant changes that
many initial design decisions prove to be
poor ones.

Prototyping

Throwaway prototyping methodologies are
similar to prototyping based
methodologies.
The main difference is that throwaway
prototyping IS completed during a different
point in the SDLC.
Has relatively thorough analysis phase.

Throwaway Prototyping

Throwaway Prototyping-based
Methodology

This category focuses on streamlining the
SDLC by eliminating much of the
modeling and documentation overhead and
the time spent on those tasks.
Projects emphasize simple, iterative
application development.
This category uses extreme programming,
which is described next.

Category III Agile Development

Extreme Programming (XP) was founded
on four core values:
– Communication
– Simplicity
– Feedback
– Courage

Extreme Programming (XP)

Key principles of XP include:
– Continuous testing
– Simple coding
– Close interaction with the end users to

build systems very quickly

Extreme Programming (XP)

An Extreme Programming-
based Methodology

Selecting a methodology is not simple, as
no one methodology is always best.
Many organizations have their own
standards.
The next figure summarizes some
important methodology selection criteria.

Selecting the Appropriate
Development Methodology

Criteria for Selecting a
Methodology

Clarity of User Requirements

RAD methodologies of prototyping and
throwaway prototyping are usually more
appropriate when user requirements are
unclear as they provide prototypes for
users to interact with early in the SDLC.

Familiarity with Technology

If the system is designed without some
familiarity with the base technology, risks
increase because the tools may not be
capable of doing what is needed.

System Complexity

Complex systems require careful and
detailed analysis and design.
Project teams who follow phased
development-based methodologies tend to
devote less attention to the analysis of the
complete problem domain than they might
if they were using other methodologies.

System Reliability

System reliability is usually an important
factor in system development.
Throwaway prototyping-based
methodologies are most appropriate when
system reliability is a high priority.
Prototyping-based methodologies are
generally not a good choice as they lack
careful analysis and design phases.

Short Time Schedules

RAD-based methodologies are well suited
for projects with short time schedules as
they increase speed.
Waterfall-based methodologies are the
worst choice when time is essential as they
do not allow for easy schedule changes.

Schedule Visibility

RAD-based methodologies move many of
the critical design decisions earlier in the
project; consequently, this helps project
managers recognize and address risk
factors and keep expectations high.

Project Team Skills and Roles

Projects should consist of a variety of skilled
individuals in order for a system to be successful.
Six major skill sets an analyst should have
include:
– Technical
– Business
– Analytical
– Interpersonal
– Management
– Ethical

Categories of Analysts

Business Analyst
Systems Analyst
Infrastructure Analyst
Change Management Analyst
Project Manager

Project Team Roles

Rational united Process

Rational (now part of IBM) came up with the
Rational united Process along with a set of tools
to facilitate software lifecycle management

RUP divides a project into 4 broad phase
Inception Phase :
Takes about 10% of effort
Emphasis on gaining an idea and vision on the

product
Primarily sequential and non iterative
Important risks are identified

Rational united Process

Elaboration phase:
Takes about 20% effort

Construction:
Transition:

Summary

The Systems Development Lifecycle consists
of four stages: Planning, Analysis, Design, and
Implementation
There are six major development
methodologies: the waterfall method, the
parallel development method, the phased
development method, system prototyping,
design prototyping, and agile development.
There are five major team roles: business
analyst, systems analyst, infrastructure analyst,
change management analyst and project
manager.

Software Project Life cycle

End of Chapter 3

	Managing IT Projects
	The Systems Development Life Cycle (SDLC)
	Three Analysis Steps
	Five Design Steps
	Process-centered Methodologies
	Waterfall Development-based Methodology
	 Parallel Development
	Phased Development-based Methodology
	Prototyping-based Methodology
	Throwaway Prototyping-based Methodology
	An Extreme Programming-based Methodology
	Criteria for Selecting a Methodology
	Clarity of User Requirements
	Familiarity with Technology
	System Complexity
	System Reliability
	Short Time Schedules
	Schedule Visibility
	Project Team Skills and Roles
	Categories of Analysts
	Project Team Roles
	Rational united Process
	Rational united Process
	Summary
	Software Project Life cycle�

